Category: রিসার্চ/Research

  • What is the Likelihood Ratio? Why do we need it?

    05/07/2023

    Likelihood Ratio (LR) is applied when we want to assess the diagnostic power of an investigation or laboratory test.   

    To understand the likelihood ratio, we first need to understand that the tests we use to diagnose a particular disease condition or state are rarely 100% sensitive.

    By sensitivity, we mean the ability of a test to ‘detect‘ a disease when there is ‘one‘.

    This means sometimes the test may fail to detect a disease when there is ‘one’.

    e.g., A 90% sensitivity means the test can correctly detect 90 out of 100 patients with a particular disease.

    By Specificity, we mean the ability of a test to ‘exclude‘ a disease when there is ‘none‘.

    This means sometimes the test may mistakenly detect a disease when there is ‘none’.

    e.g., A 80% specificity means the test can correctly exclude 80 out of 100 persons who don’t actually have the disease.

    Suppose a test is 90% sensitive and fails 10% of time to detect the disease when it is positive. What is the likelihood that ‘a particular person’ might have the disease when tested (and the test comes out positive for the specific disease) with this specific investigation?

    To calculate this likelihood, we need to use some mathematical formulation.

    Let us first consider what the possibilities are when a test is done among a group of persons.

    • group a, who are disease positive and test positive;
    • group b, who are disease negative but test positive;
    • group c, who are disease positive but test negative;
    • group d, who are disease negative and test negative.

    Check the table in the image.

     Disease PositiveDisease NegativeTotal
    Test positivea (True Positive)b (False Positive)a+b  
    Test negativec (False Negative)d (True Negative)c+d  
    Totala+cb+da+b+c+d

    Here,

    Sensitivity  = a/(a+c)

    Specificity = d/(b+d)

    Positive predictive value (PPV) = a / (a+b)

    Negative predictive value (NPV) = d/(c+d)

    Now let us derive the equation for the likelihood ratio for a positive test,

    The likelihood that a test will be positive when a disease is present.

    = Number of affected persons who are positive / Number of persons who are affected

    = a / (a+c)

    = sensitivity

    The likelihood that a test is falsely positive when the disease is not present.

    = Number of unaffected persons who are positive / Number of unaffected persons

    = b/ (b+d)

    = 1 – d/(b+d)

    = 1 – Specificity

    So, the likelihood ratio of having a disease when the test is positive is,

     (LR+) = sensitivity/ (1 – specificity)

    Similarly,

    The likelihood that a test will be falsely negative when a disease is present.

    = Number of affected persons who tested negative/ Number of persons who are affected

    = c / (a+c)

    = 1 – a/(a+c)

    = 1 – sensitivity

    The likelihood that a test is negative when the disease is not present.

    = Number of unaffected persons who are negative / Number of unaffected persons

    = b/ (b+d)

    =Specificity

    So, the likelihood ratio of having a disease when the test is negative is,

    (LR-)  = (1- sensitivity)/ Specificity

    Now, the likelihood ratio comes in handy in the calculation of the post-test probability of having the disease after a test is done and, therefore, gives a measure of the diagnostic capability of a test (i.e., investigation).

    How?

    To calculate the post-test probability of having the disease by a person, you need to know the post-test odds of having the disease (i.e., the post-test probability of having the disease / post-test probability of not having the disease). Post-test odds, on the other hand, depend on pre-test odds. The equations are as follows:

    Post-test odds = pre-test odds * LR

    Pre-test odds = pre-test probability / (1-pre-test probability)

    Post-test probability = post-test odds / (post-test odds+1)  

    Note that the pre-test probability implies the probability of having the disease before the test was done. This is expressed by the prevalence of the disease (or condition) in the population.  

    Why does pre-test probability matter?

    In the Bayesian approach, we need to know the prior probability of an event to calculate the posterior probability of it. Bayesian inference derives the posterior probability as a consequence of two antecedents: a prior probability and a “likelihood function” derived from a statistical model for the observed data.

    As the prevalence of disease is not the same for all diseases, taking the prevalence of that disease in question during the calculation of the probability of a person having the disease given a specific test, makes intuitive sense. Also, as the ‘test’ done to detect the disease might not be 100% sensitive and specific, if a test detects a disease in a person, it doesn’t mean the person might be having the disease.  

    The benefit of calculating the likelihood ratio:

    1. The Likelihood ratio is not affected by the prevalence of a disease like that of Positive predictive value and negative predictive values of a test.
    2. It gives an idea about the diagnostic capacity of a test.

    05/07/2023

    The probability of finding ‘no’ difference (in the variable of interest) between two study groups when there is ‘none’ (in the original population) is known as confidence.

    The opposite of confidence is the type I error. I mean, the probability of finding ‘a’ difference when there is ‘none’ is the type I error.

    When we are 95% confident, we mean that in 95 out of 100 cases, our study procedure will find ‘no’ difference, when there is ‘none’.

    Remember the NULL hypothesis! We assume that there is no difference.

    Based on the type I error, we set the level of significance. When we set the level of significance (p) at <0.05. We allow the probability of finding a difference when there is none in less than 5 out of 100 cases.

    The probability of finding ‘a’ difference when there is ‘one’ between two study groups (in the original population) is known as power.

    The opposite of power is the type II error. This means the probability of finding a ‘no’ difference when there is ‘one’.

    When we say we have 80% power, we mean that in 80 out of 100 cases, our procedure will find ‘a’ difference when there is one.


    Usually in study designs, researchers prefer 95% confidence. But they are often more flexible with power. The usual practice is to set the power at 80%.

    Can anyone tell me why is this the case? I mean, why do we allow flexibility in power, but not in confidence?

    ০২/০৩/২০২৩

    নিপাহ ভাইরাস প্রতিরোধে ChAdOx1 NiV ভ্যাক্সিন

    বাংলাদেশের নিপাহ ভাইরাসের স্ট্রেইন-এর বিরুদ্ধে ধেড়ে ইঁদুরের ন্যায় প্রাণি হ্যাম্সটার (1) এবং গ্রিন মানকি (2) প্রজাতিতে ChAdOx1 NiV ভ্যাক্সিন প্রয়োগ করে দেখা গেছে যে ভ্যাক্সিনটি নিপাহ ভাইরাসের বিপরীতে সম্পূর্ণ প্রতিরোধ গড়ে তুলতে সক্ষম। 

    বিজ্ঞানী Doremalen এবং তার সহযোগীরা নিপাহ ভাইরাসের বাংলাদেশে স্ট্রেইন থেকে গ্লাইকোপ্রোটিন জি জিন নিয়ে থার্মো ফিসার সায়েন্টিফিক -এর জিনআর্ট এর সাহায্যে প্রথম জি জিন তৈরী করেন। এরপর এর সাথে মানুষের সাইটোম্যাগালোভাইরাসের মোডিফাইড ভার্শন থেকে টেট্রাসাইক্লিন অপারেটর সহ  প্রমোটার এবং বোভাইন গ্রোথ হরমোনের পলি এডিনাইলেশন সিগনাল নিয়ে একটি জিন ক্যাসেট তৈরী করেন । উক্ত জিন ক্যাসেটকে T-Rex-293 (ইনভাইট্রোজেন)- সেল লাইনে প্রবেশ করিয়ে তার থেকে পরবর্তীতে এডেনোভাইরাস ভেক্টরকে আইসোলেট করা হয় (1)।

    এরপর, হ্যামস্টার এবং গ্রিন মানকিতে ভ্যাক্সিন প্রয়োগ করে নির্দিষ্ট প্রক্রিয়ায় নিপাহ ইনফেকশন করার পর দেখা হয় যে তা নিপাহ প্রতিরোধ করতে পারে কি না। দু’ধরনের প্রানীর ক্ষেত্রেই উক্ত ভ্যাক্সিনের সাফল্য পাওয়া গিয়েছে, যা খুবই আনন্দের খবর।

    আমরা জানি, মানুষের প্রয়োগের আগে মানুষের কাছাকাছি জিন সম্বলিত প্রাণীতের ভ্যাক্সিনের ট্রায়াল করে তার কার্যকরিতা এবং নিরাপদ কি না তা দেখা হয়। সে হিসেবে এ ধাপে উক্ত ভ্যাক্সিনটি সফল। তবে সামনে আরও কয়েক ধাপে ট্রায়াল হয়ে ভলানটির মানব দেহে পরীক্ষা করার পর সফল হলেই আমরা বলতে পারবো যে নিপাহ ভাইরাস প্রতিরোধ আমাদের হাত থেকে কত দূরে।

     রেফারেন্স:

    1. https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.000746
    2. https://www.nature.com/articles/s41541-022-00592-9
  • বিজ্ঞানে তত্ত্বের মিথ্যা প্রমাণ যোগ্যতা

    (Falsifiability in science)

    ধরুন, আপনার কাছে আপনার বন্ধু এসে দাবী করল তার বাসার চিলেকোঠায় ‘নোম’ নামক এক প্রকার কিম্ভূতকিমাকার প্রাণী আছে। প্রাণীগুলো সাইজে লিলিপুটদের মত। সবুজ রঙের।

    আপনি একজন রিজনেবল মানুষ। আপনি জানতে চাইলেন এই প্রাণী আছে তার প্রমাণ কি?

    আপনার বন্ধু বলল যে, সে নিজ চোখে দেখেছে। আপনি তার কথায় বিশ্বাস করতে পারলেন না। এজন্য স্বচক্ষে দেখতে তার বাসায় গেলেন। কিন্তু, আপনি দরজা খুলে সম্পূর্ণ পরিচ্ছন্ন গোছানো একটি রুম ছাড়া কিছু দেখতে পারলেন না। আপনার বন্ধুও প্রমাণ হিসেবে তার বিশ্বাস ছাড়া কোন এনোম্যালী তথা বাসার স্বাভাবিক অবস্থা থেকে ব্যতিক্রম কিছু উপস্থাপন করতে পারলো না।

    আপনার মনে হল আপনার বন্ধু বোধ হয় হ্যালুসিনেট করছে। কিন্তু, আপনি তার ইভ্যালুয়েশন করে কোন মেডিকেল কারণ খুজে পেলেন না। আপনার কাছে কোন উপাত্ত না থাকায় বা‘নোম’ এর উপস্থিতি প্রমাণ বা অপ্রমাণের কোন উপায় না থাকায়, তার বিশ্বাসকে আপনি মিথ্যাও প্রতিপন্ন করতে পারলেন না।

    আপনার বন্ধুর দাবীটি(বা প্রকল্প বা তত্ত্বটি) বৈজ্ঞানিকভাবে মিথ্যা প্রমাণ যোগ্য নয় বিধায় বিজ্ঞানের দর্শনের পরিভাষায় একে বলা হচ্ছে ‘unfalsifiable statement’।

    বিজ্ঞানের দার্শনিক (Philosopher of Science) কার্ল পপারের মতে কোন তত্ত্বকে ‘বৈজ্ঞানিক তত্ত্ব’ হিসেবে স্বীকৃতি দেবার জন্য তা Falsifiable হতে হবে। অর্থাৎ, একদল গবেষক যদি দাবী করে যে নতুন এক ধরনের শ্বসনতন্ত্রের রোগ দেখা দিয়েছে যার পিছনের একটি ভাইরাস দায়ী। অন্য গবেষকদের সেটি পরীক্ষানিরীক্ষার মাধ্যমে মিথ্যা(বা মিথ্যা নয়) প্রমাণ করার সুযোগ থাকতে হবে।

    কোন উপাত্ত ব্যাখ্যার জন্য প্রদত্ত তত্ত্ব যদি মিথ্যা প্রমাণ করার সুযোগ না থাকে তাহলে তা বৈজ্ঞানিক তত্ত্ব হিসেবে স্বীকৃতি পাবে না।

    এখন, কোন উপাত্তের অবস্থা যদি এমন হয় তা ব্যাখার জন্য প্রদত্ত তত্ত্ব পরীক্ষানিরীক্ষা করে পর্যবেক্ষণ সম্ভব নয়, সেক্ষেত্রে দার্শনিক রিজনিং প্রয়োগ করে উক্ত তত্ত্বের বিশ্বাস যোগ্যতা যাচাই করা যেতে পারে। কিন্তু, সেটা বিজ্ঞানের জগতের বাইরে দর্শনের জগতে প্রবেশ করবে।

    সুতরাং, আমরা যারা গবেষক হতে চাই, আমাদের মনে রাখতে হবে যে আমরা আমাদের পর্যবেক্ষণ লব্ধ উপাত্ত থেকে রিজনিং-এর মাধ্যমে যে তত্ত্ব দিয়ে উক্ত উপাত্তের কার্যকারণ ব্যাখ্যা করতে চাই, তা যেন ফলসিফাইয়েবল হয়।

  • গবেষণায় যুক্তিপ্রয়োগ

    রিসার্চ বা গবেষণার একটি গুরুত্বপূর্ণ অনুসঙ্গ হচ্ছে Inference । বাংলায় এর অর্থ হচ্ছে সিদ্ধান্ত নেয়া বা অনুমান করা।

    আমরা যখন কোন রিসার্চ বা গবেষণা করি, তখন একটি গবেষণা চক্রের মধ্যে দিয়ে যেতে হয়। উক্ত গবেষণা চক্রের গুরুত্বপূর্ণ অংশ হলো ইনফারেন্স।

    গবেষণা চক্রের গড়নটা হচ্ছে অনেকটা এ রকম- তত্ত্ব (Theory) – প্রকল্প (Hypothesis) – উপাত্ত (Observation) –অনুমান/সিদ্ধান্ত (Inference)- তত্ত্ব (Theory)।

    ইনফারেন্স করার জন্য বৈজ্ঞানিকরা যে চিন্তা প্রক্রিয়া ব্যবহার করেন তাকে বলা হয় যুক্তি প্রয়োগ তথা Reasoning।

    বৈজ্ঞানিক গবেষণায় কারণ খুঁজে বের করার প্রক্রিয়া বা যুক্তি প্রয়োগ (Reasoning) বিভিন্ন রকম হতে পারে। চলুন উদাহরণ দিয়ে বিষয়গুলো বোঝার চেষ্টা করি।

    এক, ধরুণ আপনি ভিন্ন কোন গ্রহে প্রাণের খোঁজে গিয়েছেন। আপনি জানেন যে, কোন স্থানে জীব থাকলে পানিও থাকবে (প্রস্তাব ১)। আপনি উক্ত গ্রহে একটি জীব খুঁজে পেলেন (প্রস্তাব ২)। সুতরাং, আপনি যৌক্তিক সিদ্ধান্তে উপনিত হবেন যে উক্ত গ্রহে পানি আছে (সিদ্ধান্ত)। এই ধরণের রিজনিংকে বলা হয় Deductive Reasoning।

    অর্থাৎ, ডিডাকটিভ রিজনিং-কে নিচের কাঠামো দিয়ে প্রকাশ করা যায়।

    প্রস্তাব ১: সকল ‘ক’-ই ‘খ’।

    প্রস্তাব ২: ‘গ’ হচ্ছে একটি ‘ক’।

    সুতরাং: ‘গ’-ও একটি ‘খ’।

    দুই, আপনি আপনার জীবনে যতগুলো কাক দেখেছেন সবগুলোই কালো (উপাত্ত)। সুতরাং, আপনার প্রকল্প বা হাইপোথিসিস হচ্ছে যে আপনি যদি আরেকটি কাক দেখেন তা কালো হবে (সিদ্ধান্ত)। এই ধরনের রিজনিংকে বলা হয় Inductive reasoning।

    উপাত্ত: আপনার দেখা সকল কাক কালো।

    সিদ্ধান্ত: সকল কাকই কালো।

    ইনডাকটিভ রিজনিং-এর সমস্যা হলো আপনি সিদ্ধান্ত নিচ্ছেন আপনার সীমিত পর্যবেক্ষনের মাধ্যমে। হতে পারে আপনার একজন বন্ধু একদিন একটি ‘সাদা কাক’ দেখতে পেলো। তখন আপনার পর্যবেক্ষনের মাধ্যমে প্রাপ্ত সিদ্ধান্তটি ভুল প্রমানিত হবে।

    ইনডাকটিভ রিজনিং-কে নিচের কাঠামো দিয়ে প্রকাশ করা যায়।

    উপাত্ত: সকল আপাত পর্যবেক্ষণ লব্ধ ‘ক’-ই ‘খ’।

    সিদ্ধান্ত: সকল ‘ক’-ই ‘খ’।

    তিন, আপনি একজন অনুজীব বিজ্ঞানী। আপনি দেখলেন ব্যাকটেরিয়ার মধ্যে যে ফ্ল্যাজেলা আছে তাতে চল্লিশটি বিভিন্ন ধরনের প্রোটিন একটি সুনির্দিষ্ঠ গঠনে পরস্পরের সাথে আন্ত:নির্ভরশীল প্রক্রিয়ায় একটি ফিতার ন্যায় অংশের ঘূর্ণনের মাধ্যমে ব্যাকটেরিয়ার নড়াচড়ার কাজ সম্পন্ন করে। আপনার মাথায় প্রশ্ন আসলো এ ধরনের একটি গঠন কিভাবে সৃষ্টি হল?

    আপনি পর্যবেক্ষণ করে দেখলেন যে একমাত্র মানুষের মত ‘বুদ্ধিমান’ সত্ত্বাই এ ধরনের জটিল গঠন তৈরী করতে পারে- যেখানে অনেকগুলো পরস্পর নির্ভরশীল অংশের সমন্বয়ে গঠিত কোন যন্ত্র একটি নির্দিষ্ট কাজ বা উদ্দেশ্য সম্পাদন করতে পারে। কোন এলপাতাড়ি প্রক্রিয়া এ ধরনের জটিল গঠন কখনও একা একা তৈরী হয় না। যেখানে আপনি কখনো দেখতে পান নি একটি টর্ণেডো কোন স্তুপীকৃত ইট থেকে কোন ঘর বানিয়ে দিয়েছে। সেখানে কোন একটি মেশিন একা তৈরী হয়ে গিয়েছে সেটা অসম্ভব।

    সুতরাং, আপনি অনুসিদ্ধান্তে আসলেন যে উক্ত ব্যাকটেরিয়া ফ্ল্যাজেলাম কোন র‍্যানডম চান্সের মাধ্যমে সৃষ্টি হওয়া সম্ভব নয়। এর পিছনে নিশ্চয়ই কোন ডিজাইনার ইন্টেলিজেন্স আছে।

    এ ধরনের রিজনিং-কে বলা Abductive Reasoning ।

    অন্যভাবে একে বলা হয়- Inference to the best explanation

    অথাৎ, একাধিক উপাত্তের জন্য যদি কয়েকটি সম্ভাব্য কারণ বা প্রকল্প থাকে, তার মধ্যে সর্বত্তোম কারণ বা প্রকল্পটিকে বেছে নেয়াই হচ্ছে অ্যাবডাকটিভ রিজনিং।

    সুতরাং, অ্যাবডাকটিভ রিজনিং-এর কাঠামো হচ্ছে –

    প্রস্তাব ১: ‘ক’ হবার জন্য ‘খ’ বা ‘গ’ দায়ী।

    প্রস্তাব ২: পর্যবেক্ষনে দেখা গেছে ‘ক’ জাতীয় কার্যকারণ ‘চ’-এর পিছনে ‘খ’ দায়ী।

    সুতরাং: ‘ক’ হবার পিছনে সবত্তোম ব্যাখ্যা হচ্ছে ‘খ’ দায়ী।

    অ্যাবডাকটিভ ইনফারেন্স-এর একটি সমস্যা হল, একটি সর্বচ্চো সম্ভাব্য কারণকে নির্দেশ করে। কিন্তু, উক্ত কারণ যে নিশ্চিতভাবেই দায়ী তা বলতে পারে না। ব্যাবহারিক কারণে আনুসঙ্গিক উপাত্ত থেকে এটিকেই বেস্ট ব্যাখ্যা হিসেবে ধরে নেয়া হয়।

    সুতরাং, অনুমান/সিদ্ধান্ত কিভাবে নেয়া হচ্ছে তার ওপর ভিত্তি করে কারণ অনুসন্ধান (Reasoning) তিন ধরনের হতে পারে।

    ১. Deductive reasoning

    ২. Inductive reasoning

    ৩. Abductive reasoning

    এই তিন ধরনের রিজনিং প্রক্রিয়াই যে কোন বৈজ্ঞানিক গবেষণার জন্য গুরুত্বপূর্ণ। একটি গবেষণায় উক্ত রিজনিং-এর যে কোন একটি বা একাধিক প্রয়োগ হতে পারে।

    যারা বৈজ্ঞানিক বা স্বাস্থ্য গবেষক হতে চান, তাদের এই রিজনিং প্রক্রিয়া সম্পর্কে সম্মক ধারণা থাকা এবং তা চর্চা করা জরুরী।

  • করোনা ভাইরাসের অ্যান্টিবডি টেস্ট কেমন হতে হবে- সেনসিটিভ না স্পেসিফিক?

    কোন টেস্টের সেনসিটিভিটি কি?

    ধরুন, আপনি জানেন ১০০ জন ব্যক্তির করোনা আছে। আপনি একটি নতুন টেস্ট ‘ক’ তৈরী করেছেন যার সেনসিটিভিটি আপনি দেখতে চান। আপনি উপরোক্ত ১০০ ব্যক্তির রক্ত নিয়ে আপনি নতুন পরীক্ষাটি করলেন এবং দেখলেন যে ৮০ জন ব্যক্তির করোনা পজিটিভ এবং ২০ জন ব্যক্তির করোনা নেগেটিভ।

    তাহলে উক্ত ৮০ জন ব্যক্তির জন্য টেস্ট ‘ক’ ট্রু পজিটিভ এবং ২০ জন ব্যক্তির জন্য ফল্স নেগেটিভ। এখানে সেনসিটিভিটি হলো উক্ত ১০০ জন করোনা রোগীর মধ্যে কতজনকে কে সঠিকভাবে নির্ণয় করতে পারে। সে হিসেবে আমাদের টেস্ট ‘ক’ এর সেনসিটিভিটি হল ৮০%। কারণ, সে ৮০ জনের ক্ষেত্রে সঠিক ভাবে করোনা ধরতে পেরেছে।

    করোনা ভাইরাসের অ্যান্টিবডি টেস্ট কেমন হতে হবে

    কোন টেস্টের স্পেসিফিসিটি কি?

    ধরুন, আপনি একই টেস্ট এমন ১০০ জন মানুষের মধ্যে করলেন যাদের ক্ষেত্রে আপনি rt-PCR করে নিশ্চিত হয়েছেন যে করোনা নেই। এদের মধ্যে আপনার টেস্টটি ৯০ জনের ক্ষেত্রে করোনা ভাইরাস নেগেটিভ বললো এবং ১০ জনের ক্ষেত্রে (ভুলভাবে) করোনা ভাইরাস পজিটিভ বললো।

    তাহলে উক্ত ৯০ জন হল ট্রু নেগেটিভ এবং ১০ জন হল ফল্স পজিটিভ। এখানে স্পেসিফিসিটি হলো উক্ত ১০০ জন সুস্থ মানুষের মধ্যে কতজনকে সঠিকভাবে সুস্থ বলতে পারলো। অর্থাৎ, আমাদের টেস্ট ‘ক’ এর স্পেসিফিসিটি হল ৯০%।

    এখন করোনা রোগ নির্ণয় করে এমন কোন টেস্ট যদি ৮০% সেনসিটিভ হয় তার অর্থ হল উক্ত টেস্ট একশ জনে ২০ জন রোগীর করোনা নির্ণয় করতে পারে না। অর্থাৎ, ২০ জনের ক্ষেত্রে ফলস নেগেটিভ আসে। এটা একটা সমস্যা। আমাদের টেস্ট যদি করোনা রোগী ধরতে না পারে, তার অর্থ অনেক রোগী করোনা নিয়ে ঘুরে বেড়াবে এবং ছড়াতে থাকবে।

    সুতরাং, আমরা যদি করোনা ভাইরাস নির্ণয়ের কোন র‍্যাপিড টেস্ট ডেভেলোপ করি (খরচ ও সময় বাঁচানোর উদ্দেশ্যে) তাহলে ঐটার সেনসিটিভিটি যত ভালো হয় তত উত্তম। এ ধরনের একটি টেস্ট হল করোনা ভাইরাসে এন্টিজেন টেস্ট।

    অ্যান্টিবডি টেস্ট-এর ক্ষেত্রে কোনটা বেশী গুরুত্বপূর্ণ?

    প্রশ্ন হল, আমি যদি এমন একটি টেস্ট ডেভেলোপ করি যেটা আসলে করোনা ভাইরাসকে নির্ণয় না করে করোনা ভাইরাসের বিরুদ্ধে আমাদের শরীরের সৃষ্ট প্রতিরোধ ব্যবস্থাকে নিণয় করে, তাহলেও কি তার সেনসিটিভিটি গুরুত্ব রাখে? চলুন একটু ভেবে দেখি।

    এ ধরনের একটি টেস্ট হতে পারে করোনা ভাইরাসের বিপরীতে সৃষ্ট অ্যান্টিবডি নির্ণয়। উপরের উদাহরণটা চিন্তা করুন। ধরুন, আমাদের টেস্ট ‘ক’ ১০০ জনের মধ্যে ৮০ জনের রক্তে অ্যান্টিবডি নির্ণয় করতে পারে এবং ২০ জনের ক্ষেত্রে ভুল করে। এটার অর্থ দাড়াবে এই যে, আমাদের টেস্ট ৮০ জনের ক্ষেত্রে বলতে পারে যে অ্যান্টিবডি তৈরী হয়েছে। কিন্তু, ২০ জনের ক্ষেত্রে ভুলভাবে বলবে যে অ্যান্টিবডি তৈরী হয়নি। ভাল ব্যপার হল, ২০ জনের ক্ষেত্রে প্রকৃতপক্ষে অ্যান্টিবডি আছে। কিন্তু, আমার টেস্ট তাদের রক্তে নির্ণয় করতে ব্যর্থ হয়েছে।

    লক্ষ্য করুন, আমরা চাই একজন ব্যক্তির অ্যান্টিবডি তৈরী হয়ে যাক। সুতরাং, আমার র‍্যাপিড অ্যান্টিবডি ডিটেক্টিং টেস্ট যদি ২০ জনের ক্ষেত্রে নাও নির্ণয় করে আমাদের সমস্যা নেই। কারণ, উক্ত ২০ জনের ক্ষেত্রে ইতমধ্যে অ্যান্টিবডি আছে, সুতরাং করোনা ভাইরাস নতুন করে আক্রমণ করলেও সে প্রোটেক্টেড থাকবে (আশা করা যায়)*।

    কিন্তু, আমার অ্যান্টিবডি টেস্ট তখন ঝামেলা করবে যখন তার স্পেসিফিসিটি কম হবে। কারণ, যদি আমার টেস্ট ‘ক’-এর ৯০% স্পেসিফিসিটি থাকে এটি ১০ জন ব্যক্তিকে বলবে যে তাদের শরীরে অ্যান্টিবডি তৈরী হয়েছে আসলে যাদের শরীরের করোনা ভাইরাসের বিরুদ্ধে অ্যান্টিবডি তৈরী হয়নি (ফলস পজিটিভ)। সেক্ষেত্রে উক্ত ১০ জনের ক্ষেত্রে একটি মিথ্যা নিরাপত্তাবোধ তৈরী হবে। কিন্তু, আমি কোন ভাবেই চাইবো না কোন সুস্থ ব্যাক্তির করোনা ভাইরাসের বিপরীতে অ্যান্টিবডি না থাকলেও তাকে বলা যে তার অ্যান্টিবডি আছে। কেননা সেক্ষেত্রে সে প্রতিরোধের ব্যপারে শিথিল হয়ে করোনা ভাইরাস দিয়ে আক্রান্ত হয়ে যেতে পারে।

    সুতরাং, যে কোন অ্যান্টিবডি ডিটেকশন টেস্ট-এর ক্ষেত্রে আমরা চাইবো তা যেন সর্বোচ্চ স্পেসিফিক হয়**।

    অন্যদিকে যে কোন করোনা ভাইরাস ডিটেকশন টেস্টের ক্ষেত্রে আমরা চাইবো তা যেন সবোর্চ্চ সেনসিটিভ হয়।

    *যদি ডেঙ্গুর মত (ভিন্ন স্ট্রেইন দিয়ে) অ্যান্টিবডি ডিপেনডেন্ট এনহেন্সমেন্ট নামক ঘটনা ঘটে তাহলে অবশ্য সমস্যা।

    ** তবে আমি যদি অ্যান্টিবডি টেস্ট দিয়ে পরোক্ষভাবে করোনা ভাইরাস জনিত রোগ কোভিড-১৯ নির্ণয় করতে চাই, অর্থাৎ একজন ব্যক্তির রক্তে অ্যান্টিবডির উপস্থিতি দেখে জানতে চাই যে তার করোনা ভাইরাস ইনফেকশন হয়েছিলো কি না, সেক্ষেত্রে আমার জন্য উক্ত টেস্টে সেনসিটিভিটি গুরুত্বপূর্ণ হবে।

    ……

    কিছু টেকনিক্যাল কথা (যারা জানে তাদের জন্য)-

    আমরা জানি কোন ইভেন্টের প্রিভ্যালেন্স বেশী হলে পজিটিভি প্রেডিক্টিভ ভ্যালু বেশী হয়। সুতরাং, করোনা ভাইরাসের এন্টিবডি যদি ওয়াইডস্প্রেড হয়ে থাকে (যা আমরা এই মূহুর্তে জানি না), তার অর্থ হল এন্টিবডি ডিটেকশন কিটের পজিটিভি প্রেডিক্টিভ ভ্যালু বেশী হবে। সুতরাং, ফলস পজিটিভ কম হবে । ফলস পজিটিভ কম হলে তার স্পেসিফিসিটি বেশী থাকবে। সুতরাং, আমাদের টেস্টের এন্টিবডি ডিটেকশন সেনসিটিভিটি কম্প্রোমাইজড হলেও এন্টিবডির প্রিভ্যালেন্স বেশী হয়ে থাকলে আমাদের এন্টিবডি ডিটেকশন কিট খুবই হেল্পফুল হবে।

  • মেটাঅ্যানালাইসিসে ওজন দান

    মেটাঅ্যানালাইসিসে ওজন দান

    মেটাঅ্যানালাইসিসকে বলা হয় স্বাস্থ্য গবেষণার সর্বচ্চো প্রমাণ। কারণ, কোন একটি নির্দিষ্ট প্রশ্নের উত্তর খুঁজতে গিয়ে করা গবেষণাগুলোর প্রাপ্ত ফলাফলকে একত্র করে হিসেব প্রকাশ করাই হল মেটাঅ্যানালাইসিস।

    কিন্তু, বিভিন্ন গবেষণায় প্রাপ্ত হিসেবকে একত্র করার বিষয়টি সরল অংকের মত সহজ নয়। অর্থাৎ, কিছু গবেষণাপত্র একত্র করে সংশ্লিষ্ট হিসেব নিকেষ শুধু যোগ করে ভাগ করলেই যে একটি একত্রিত হিসেব পাওয়া যাবে তা নয়। মেটাঅ্যানালাইসিসে কোন কোন গবেষণাকে অন্তর্ভূক্ত করা হবে তা নির্ভর করে অনেকগুলো প্রশ্নের উপর এবং কিছু পূর্ব নির্ধারিত যোগ্যতার আলোকে গবেষণাপত্র নির্বাচন করতে হয়। আলোচ্য প্রবন্ধে আমরা মেটাঅ্যানালাইসিসে যে প্রক্রিয়াসমূহের মাধ্যমে হিসেবগুলোকে একত্রিত করা হয় তার অন্যতম একটি প্রক্রিয়া সম্পর্কে সহজভাবে বোঝার চেষ্টা চালাবো। জানি না কি হয়! চলুন নেমে পড়ি।

    একটি উদাহরণ দিয়ে বিষয়টি বুঝার চেষ্টা করি। মনে করুন আপনি বাংলাদেশের প্রাপ্তবয়স্ক মানুষের রক্তের সুগারের গড় হিসেব বের করতে চান। আমরা জানি প্রতিটি গবেষণায় কিছু স্যাম্পল নিয়ে কাজ করে। যেহেতু একটি স্থানে বিভিন্ন ধরনের মানুষ থাকে সেহেতু উক্ত স্থানে কৃত গবেষণায় আমরা রক্তের সুগারের একটি মিন (তথা গড়) এবং ভ্যারিয়েন্স (তথা ভেদমান) পাব। আবার বিভিন্ন স্থানেকৃত গবেষণায় বিভিন্ন মিন এবং ভ্যারিয়েন্স পাওয়া যাবে।

    ধরি, আপনি একটি মেটাঅ্যানালাইসিস করছেন যেখানে আপনি ঢাকা, চট্টগ্রাম, সিলেট, রাজশাহীতে করা পৃথক কিছু গবেষণাপত্র সিলেক্ট করেছেন। যেগুলোতে উক্ত স্থানে বসবাসরত মানুষের রক্তের সুগারের গড় দেয়া আছে। উক্ত গবেষণাপত্রে সংশ্লিষ্ট শহরের সব মানুষকে নিয়ে রক্তের সুগার মাপা হয়নি। বরং, প্রতিটি শহর থেকে কিছু স্যাম্পল মানুষ নিয়ে গবেষণা করা হয়েছে।

    ফলে উক্ত চারটি গবেষণা পত্রে চার রকম মিন (গড়) এবং তদসংশ্লিষ্ট চার রকম ভ্যারিয়েন্স দেয়া আছে। বোঝার সুবিদার্থে ধরে নেই মিন এবং ভ্যারিয়েন্স যথাক্রমে –

    মিন – ৪, ৫, ৬ ও ৭ …… (১)

    ভ্যারিয়েন্স – ২.২৫, ৩.০৬, ৪.০০ ও ১.৫৬ ……. (২)

    অর্থাৎ, দেখা যাচ্ছে চারটি জায়গার স্টাডিতে মিন ও ভ্যারিয়েন্স ভিন্ন।

    পরবর্তী আলোচনায় যাবার আগে আসুন ভ্যারিয়েন্স সম্পর্কে একটি ইনটুইটিভ ফিল নেয়ার চেষ্টা করি। সহজ কথায় ভ্যারিয়েন্স হল একটি স্টাডিতে যে ‘স্যাম্পল’ ব্যক্তিদের নেয়া হয়েছে তাদের ব্লাডসুগার উক্ত স্যাম্পলের মিন থেকে কতটুকু দূরে অবস্থান করছে। একটু গভীর ভাবে ভাবলে বুঝা যাবে, যে একটি এলাকায় থেকে যতবেশী মানুষকে স্যাম্পল হিসেবে নেয়া যাবে ঐ স্যাম্পলের ভ্যারিয়েন্স তত কমে আসবে। এটা অবশ্য সমীকরণ থেকে সবচেয়ে ভাল বুঝা যায়-

    population variance formul
    Population variance formul

    সমীকরণে স্যাম্পল সাইজ ‘N’ যেহেতু ভগ্নাংশের নিচে (ডিনোমিনেটরে) আছে সেহেতু এটি যত বড় হবে ভ্যারিয়েন্স তত ছোট হবে।

    সুতরাং ভ্যারিয়েন্স থেকে আপনি একসাথে দুটো তথ্য পাবেন। এক, কোন স্টাডির স্যাম্পল সাইজ কত এবং, দুই, কোন স্টাডির সংশ্লিষ্ট ভ্যারিয়েবলের ভ্যারিয়েশন কেমন।

    আরেকটি বিষয় হল, একটি স্টাডির স্যাম্পল সাইজ যত বড় হবে সে স্টাডি তত ভালভাবে পপুলেশনের প্রতিনিধিত্ব করতে পারবে। ধরুন আপনি এক এলাকার ১০০০০ জনের মধ্যে গবেষণা করতে চান। তাহলে তাদের মধ্য থেকে ১০০ জনকে স্যাম্পল হিসেবে নিলে পপুলেশনের সত্যিকারের হিসেবে জানতে পারবেন নাকি ১০০০ জনকে নিলে? অবশ্যই ১০০০ জনকে নিলে। (অবশ্য খরচ বেশী হওয়ার কারণে হয়ত ১০০০ জনকে নিয়ে করা অনেক সময় অবাস্তব হতে পারে। সেটা ভিন্ন আলোচনা।)

    এখন আপনি যেহেতু মেটাঅ্যানালাইসিস করছেন, আপনার রিসার্চের জন্য নির্বাচিত স্টাডিগুলোকে আপনি সমান গুরুত্ব দিবেন না। কারণ, যে স্টাডি অল্প স্যাম্পল সাইজ নিয়ে করা তাদের তুলনায় যেটি বেশী স্যাম্পল নিয়ে করা তাদের চেয়ে হিসেবের দিকে দিয়ে দুর্বল। কেন দুর্বল? উপরের প্যারাটি আবার পড়ুন। অধিকন্তু, যে স্টাডিতে ভ্যারিয়েন্স বেশী সে স্টাডির মানুষজনের মধ্যে বিভিন্নতা বেশী। তাই আপনার ইচ্ছে থাকবে প্রতিটি স্টাডি থেকে হিসেব কালেক্ট করার সময় স্টাডিগুলোকে আলাদাভাবে গুরুত্ব দেয়া। বিজ্ঞানের জার্গন-এ এটাকে বলে ‘ওয়েইট’ দেয়া।

    কেমন হয় যদি যে স্টাডিকে আমি নির্বাচন করেছি সেটা থেকেই কোন হিসেব নিয়ে ওয়েইট দেয়া যায়? ইন ফ্যাক্ট স্টাটিস্টিক্যাল হিসেব নিকেশের জন্য এ পথের বিকল্পও নেই।

    তো ওয়েইট দেয়ার জন্য গবেষকরা যেই পদ্ধতি বের করেছেন ঐটার নাম হল ‘ইনভার্স ভ্যারিয়েন্স’ মেথড। নাম থেকেই বুঝতে পারছেন এখানে সিম্পলি ভ্যারিয়েন্সকে উল্টে দেয়া হবে।

    Weighting equation
    Commonly used weighting formula

    ভ্যারিয়েন্সকে উল্টে দিলে কি হবে? ওয়েল, ভ্যারিয়েন্স যত ছোট হবে ওয়েইট তত বড় হবে। আবার ভ্যারিয়েন্স যত বড় হবে ওয়েইট তত ছোট হবে। সুতরাং, যে স্টাডি বেশী মানুষ নিয়ে করেছে তাকে আমি বেশী গুরুত্ব দিলাম, আর যে স্টাডি কম মানুষ নিয়ে করেছে তাকে কম গুরুত্ব দিলাম।

    মনে আছে তো আমরা সারাদেশের ব্লাড সুগারের একটা মিন (এসটিমেট) বের করতে চাই? এ কারণেই মেটাঅ্যানালাইসিস করছি। ওয়েইট বের করার পড় যে ফরমুলা দিয়ে আপনি (ওইয়েটেড মিন) বির করবেন সেটা হল-

    Theta estimate
    Equation for theta (weighted estimate)

    সমীকরণ নিয়ে ভেবে মাথা গণ্ডগোল না করে আসুন প্র্যাকটিক্যাল দেখি এটার ফল কি হল। আমরা উপরে (১) নং-এ যে মিন গুলো পেয়েছি ঐ চারটি মানকে যদি যোগ করে এভারেজ করি আসবে,

    এভারেজ = (৪+৫+৬+৭)/৪=৫.৫

    এখন যদি ওয়েটেড এভারেজ বা থিটা (θ) বের করি আসবে,

    θ = ৫.৬৫ (জটিলতা নিরসনে ক্যালকুলেশনের দর্শণ পরিহার করা হল)

    সুতরাং, দেখতে পারছেন ওয়েইট দেয়ার ফলে একটা পার্থক্য পাওয়া গেল। এখন আমরা আমরা যদি ঢাকা, চট্টগ্রাম, সিলেট এবং রাজশাহীর সমস্ত মানুষকে (পপুলেশন) নিয়ে একটি স্টাডি করতে পারতাম তাহলে প্রকৃত এভারেজ ব্লাডসুগার-এর যে মানটি পেতাম আমাদের এই হিসেবকৃত (এস্টিমেটেড) এভারেজ ব্লাডসুগার হয়ত তার কাছাকাছি হবে।

    ধরে নিন আমি আপনাকে এরকম একটা মেটাঅ্যানালাইসিস করে আপনার সামনে বললাম যে এভারেজ ব্লাড সুগার হল ৫.৬৫ মিলিমোল/ডেসিলিটার। কিন্তু, আপনি তো চালাক মানুষ। আপনি এই হিসেব মানতে নারাজ। আপনি অভিযোগ করলেন যে আমি প্রতিটা স্টাডি থেকে মিন ব্লাগ সুগারের হিসেব নেয়ার সময় ধরে নিয়েছি যে তারা সবাই পপুলেশনের ব্লাড সুগার ৫.৬৫ (ধরে নেই এটাই আসল পপুলেশন ব্লাড সুগার এভারেজ) মাপার চেষ্টা করেছে। কিন্তু, বাস্তবে তা নাও হতে পারে। হতে পারে যে রাজশাহীর সকল মানুষের এভারেজ ব্লাড সুগার সিলেটের সকল মানুষের তুলনায় আসলেই ভিন্ন।

    আচ্ছা আরেকটু ভেঙ্গে বলি। একটু ভেবে দেখুন সবাই আসলে কি করার চেষ্টা করছে। রাজশাহীর গবেষকরা চেষ্টা করেছে যে রাজশাহী অঞ্চলের মানুষের প্রকৃত ব্লাগ সুগারের একটা ধারণা পাওয়ার জন্য, উক্ত অঞ্চলের ‘সকল’ মানুষ থেকে ‘কিছু’ মানুষকে স্যাম্পল হিসেবে নিয়ে, প্রকৃত ব্লাড সুগারের একটা কাছাকাছি হিসেবে দিতে (সাধারণত ৯৫% শতাংশ আত্মবিশ্বাসের সাথে)। একই কাজ করেছে সিলেট, চট্টগ্রাম ও ঢাকার গবেষকরা।

    অথচ, আমি যখন সবার হিসেব একত্র করার জন্য নির্বাচন করেছি, তখন ধরে নিয়েছি (তথা এসাম্পশন করে নিয়েছি) যে সবাই আসলে এই চার এলাকার সকল মানুষের সত্যিকারের এভারেজ ব্লাড সুগারের কাছকাছি একটা হিসেব দেয়ার চেস্টা করেছে।

    এইটাকে স্ট্যাটিস্টিক্সে-এর জার্গনে বলা হয় ‘ফিক্সড ইফেক্ট মডেল’।

    কিন্তু, আপনি যে অভিযোগ করেছেন তা সত্য হওয়া সমূহ সম্ভাবনা আছে। তার মানে এই চার এলাকায় ‘আসল’ বা ‘প্রকৃত’ বা ‘পপুলেশন’ এভারেজ হয়ত ভিন্ন। ফলে তারা হয়ত সবাই ভিন্ন লক্ষ্যমাত্রার কাছাকাছি হিসেব দিতে ব্যাস্ত। তাহলে তো আমাকে এই যে ভিন্নতা, হিসেব করার সময় সেটা আমলে নিতে হত, তাই না?

    এই ভিন্নতা আমলে নেয়ার বিষয়কে বলে ‘র‍্যানডম ইফেক্ট মডেল’। র‍্যানডম ইফেক্ট মডেলে কিভাবে এই ভিন্নতাকে হিসেবের মধ্যে গনিতের ম্যাজিক দিয়ে ঢুকিয়ে দেয়া হয় সেটা আমরা অন্য কোন পোস্টে আলোচনা করব ইন শা আল্লাহ।

    আজকে এই পর্যন্তই।

    …….

    পরিশিস্ট:

    এই আলোচনা অবতারণার উদ্দেশ্য হল মেটাঅ্যানলাইসিসের ওয়েটিং-এর বিষয়টাকে একটা সহজাত অনুভূতিতে নিয়ে আসার চেষ্টা করা। এজন্য গনিত ও দুর্বোধ্য জারগনকে যতটা সম্ভব দূরে রাখার চেষ্টা করেছি।

    আমরা যে ‘মিন ব্লাড সুগারের’ হিসেবগুলো ধার নিলাম। এগুলোকে একটি সরল কিন্তু জটিল নাম দেয়া হয়েছে। এটাকে বলে ‘ইফেক্ট সাইজ’। যেহেতু একেক স্টাডি একেক জিনিস হিসেব নিকেষ করে সেহেতু বিদ্যানরা হিসেবের লক্ষ্যবস্তুর নাম দিয়েছেন ‘ইফেক্ট সাইজ’। ফিক্সড ইফেক্ট ও র‍্যানডম ইফেক্ট মডেলের ‘ইফেক্ট’ শব্দটা এখান থেকেই এসেছে। (মাঝে মাঝে বিজ্ঞানকে দূর্বোধ্য করার জন্য বিদ্যানদের চেষ্টা দেখলে মাথার চুল ছিড়তে ইচ্ছে করে। হা হা! ডোন্টমাইণ্ড।)

    আমি নিজেই যেহেতু শিক্ষানবিশ সেহেতু আমার আরেকটা উদ্দেশ্য হল আমার নিজের বোঝায় ভুল থাকলে শুধরে নেয়া। কেউ না কেউ তো তার মন্তব্য দিয়ে শুধরে দিবেন।
    (হে! কারও সঙ্গে আলোচনা না করে লিখে শিখতে আসছে!)

    আলোচনা কি বেশী সিলি হয়ে গেল? হলে জানাবেন প্লিজ।

    সবশেষে, কষ্ট করে পড়ার জন্য একটা ধন্যবাদতো আপনি অবশ্যই পান। বুঝুন বা না বুঝুন। ধন্যবাদ!